Publications

2025

Workshops

Tamir Shor, Ethan Fetaya, Chaim Baskin, Alex Bronstein, "Adversarial Robustness in Parameter-Space Classifiers", ICLR 2025 Workshop Weight Space Learning Spotlight

Conferences & Workshop Proceedings

Krishna Sri Ipsit Mantri, Carola-Bibiane Schönlieb, Bruno Ribeiro, Chaim Baskin, Moshe Eliasof, "DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations", IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Zachary Bamberger, Ofek Glick, Chaim Baskin, Yonatan Belinkov, "DEPTH: Discourse Education through Pre-Training Hierarchically", The 10th Workshop on Representation Learning for NLP (RepL4NLP 2025) @ NAACL
Moshe Kimhi, David Vainshtein, Chaim Baskin, Dotan Di Castro, "Robot Instance Segmentation with Few Annotations for Grasping", IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
Maor Dikter, Tsachi Blau, Chaim Baskin, "Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency", IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
Tsachi Blau, Roy Ganz, Chaim Baskin, Michael Elad, Alex Bronstein, "Class-Conditioned Transformation for Enhanced Robust Image Classification", IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
abstractBibTeX

Preprints

Jonathan Fhima, Jan Van Eijgen, Lennert Beeckmans, Thomas Jacobs, Moti Freiman, Luis Filipe Nakayama, Ingeborg Stalmans, Chaim Baskin, Joachim A Behar, "Enhancing Retinal Vessel Segmentation Generalization via Layout-Aware Generative Modelling", arXiv preprint arXiv:2503.01190
Tamir Shor, Chaim Baskin, Alex Bronstein, "On Adversarial Attacks In Acoustic Drone Localization", arXiv preprint arXiv:2502.20325
Tamir Shor, Moti Freiman, Chaim Baskin, Alex Bronstein, "T1-PILOT: Optimized Trajectories for T1 Mapping Acceleration", arXiv preprint arXiv:2502.20333
Amit Levi, Rom Himelstein, Yaniv Nemcovsky, Avi Mendelson, Chaim Baskin, "Enhancing Jailbreak Attacks via Compliance-Refusal-Based Initialization", arXiv preprint arXiv:2502.09755
abstractBibTeX

2024

Workshops

Yaniv Nemcovsky, Avi Mendelson, Chaim Baskin, "Sparse patches adversarial attacks via extrapolating point-wise information", AdvML-Frontiers’24: The 3nd Workshop on New Frontiers in Adversarial Machine Learning@NeurIPS’24

Journal Papers

Moshe Kimhi, Shai Kimhi, Evgenii Zheltonozhskii, Or Litany, Chaim Baskin, "Semi-Supervised Semantic Segmentation via Marginal Contextual Information", Transactions on Machine Learning Research (TMLR)
abstractBibTeXgithub
Moshe Kimhi, Tal Rozen, Avi Mendelson, Chaim Baskin, "Amed: Automatic mixed-precision quantization for edge devices", Mathematics
Klara Janouskova, Tamir Shor, Chaim Baskin, Jiri Matas, "Single image test-time adaptation for segmentation", Transactions on Machine Learning Research (TMLR)
Tamir Shor, Chaim Baskin, Alex Bronstein, "Leveraging Latents for Efficient Thermography Classification and Segmentation", MIDL 2024

Conferences & Workshop Proceedings

Moshe Kimhi, Idan Kashani, Avi Mendelson, Chaim Baskin, "Hysteresis Activation Function for Efficient Inference", Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop
Mitchell Keren Taraday, Almog David, Chaim Baskin, "Sequential Signal Mixing Aggregation for Message Passing Graph Neural Networks", Advances in Neural Information Processing Systems
abstractBibTeX
Gabriele Serussi, Tamir Shor, Tom Hirshberg, Chaim Baskin, Alex M Bronstein, "Active propulsion noise shaping for multi-rotor aircraft localization", 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
abstractBibTeX
Or Feldman, Chaim Baskin, "Leveraging Temporal Graph Networks Using Module Decoupling", The Third Learning on Graphs Conference

Patents

Chaim Baskin, Eliyahu Schwartz, Evgenii Zheltonozhskii, Alexander Bronstein, LISS Natan, Abraham Mendelson, "System and method for emulating quantization noise for a neural network",

Preprints

Tsachi Blau, Moshe Kimhi, Yonatan Belinkov, Alexander Bronstein, Chaim Baskin, "Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods", arXiv preprint arXiv:2410.17222
Tamir Shor, Chaim Baskin, Alex Bronstein, "TEAM PILOT - Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories", arXiv preprint arXiv:2409.12777
Eden Grad, Moshe Kimhi, Lion Halika, Chaim Baskin, "Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters", arXiv preprint arXiv:2406.10891

2023

Workshops

Tsachi Blau, Roy Ganz, Chaim Baskin, Michael Elad, Alex Bronstein, "Classifier robustness enhancement via test-time transformation", ICML 2023 The Second Workshop on New Frontiers in Adversarial Machine Learning

Journal Papers

Yaniv Nemcovsky, Evgenii Zheltonozhskii, Chaim Baskin, Brian Chmiel, Alex M Bronstein, Avi Mendelson, "Adversarial robustness via noise injection in smoothed models", Applied Intelligence
Or Feldman, Amit Boyarski, Shai Feldman, Dani Kogan, Avi Mendelson, Chaim Baskin, "Weisfeiler and leman go infinite: Spectral and combinatorial pre-colorings", Transactions on Machine Learning (TMLR)

Conferences & Workshop Proceedings

Itay Eilat, Ben Finkelshtein, Chaim Baskin, Nir Rosenfeld, "Strategic classification with graph neural networks", International Conference on Learning Representations 2023
Mitchell Keren Taraday, Chaim Baskin, "Enhanced Meta Label Correction for Coping with Label Corruption", Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
abstractBibTeXgithub

2022

Workshops

Maxim Fishman, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Avi Mendelson, "On Recoverability of Graph Neural Network Representations", ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Journal Papers

Tom Avrech, Evgenii Zheltonozhskii, Chaim Baskin, Ehud Rivlin, "GoToNet: Fast Monocular Scene Exposure and Exploration", Journal of Intelligent & Robotic Systems
Tal Rozen, Moshe Kimhi, Brian Chmiel, Avi Mendelson, Chaim Baskin, "Bimodal-distributed binarized neural networks", Mathematics
abstractBibTeX

Conferences & Workshop Proceedings

Ben Finkelshtein, Chaim Baskin, Haggai Maron, Nadav Dym, "A simple and universal rotation equivariant point-cloud network", Topological, Algebraic and Geometric Learning Workshops 2022
abstractBibTeX
Ben Finkelshtein, Chaim Baskin, Evgenii Zheltonozhskii, Uri Alon, "Single-node attacks for fooling graph neural networks", ICLR 2022 Workshop on Geometrical and Topological Representation Learning
abstractBibTeXgithub
Ameen Ali Ali, Tomer Galanti, Evgenii Zheltonozhskii, Chaim Baskin, Lior Wolf, "Weakly Supervised Discovery of Semantic Attributes", Conference on Causal Learning and Reasoning
Yaniv Nemcovsky, Matan Jacoby, Alex M Bronstein, Chaim Baskin, "Physical passive patch adversarial attacks on visual odometry systems", Proceedings of the Asian Conference on Computer Vision
abstractBibTeXgithub
Adam Botach, Evgenii Zheltonozhskii, Chaim Baskin, "End-to-end referring video object segmentation with multimodal transformers", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
abstractBibTeXgithub
Evgenii Zheltonozhskii, Chaim Baskin, Avi Mendelson, Alex M Bronstein, Or Litany, "Contrast to divide: Self-supervised pre-training for learning with noisy labels", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
abstractBibTeXgithub

2021

Workshops

Alex Karbachevsky, Chaim Baskin, Evgenii Zheltonozhskii, Yevgeny Yermolin, Freddy Gabbay, Alex M Bronstein, Avi Mendelson, "Early-stage neural network hardware performance analysis", ISCA 2020 AccMl workshop

Journal Papers

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein, Avi Mendelson, "Loss aware post-training quantization", Machine Learning
Chaim Baskin, Evgenii Zheltonozhkii, Tal Rozen, Natan Liss, Yoav Chai, Eli Schwartz, Raja Giryes, Alexander M Bronstein, Avi Mendelson, "Nice: Noise injection and clamping estimation for neural network quantization", Mathematics
Chaim Baskin, Natan Liss, Eli Schwartz, Evgenii Zheltonozhskii, Raja Giryes, Alex M Bronstein, Avi Mendelson, "Uniq: Uniform noise injection for non-uniform quantization of neural networks", ACM Transactions on Computer Systems (TOCS)
Chaim Baskin, Brian Chmiel, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein, Avi Mendelson, "CAT: Compression-Aware Training for bandwidth reduction", Journal of Machine Learning Research
abstractBibTeX

Preprints

2020

Workshops

Evgenii Zheltonozhskii, Chaim Baskin, Alex M Bronstein, Avi Mendelson, "Self-Supervised Learning for Large-Scale Unsupervised Image Clustering", NeurIPS 2020 Workshop: Self-Supervised Learning – Theory and Practice
abstractBibTeXgithub
Evgenii Zheltonozhskii, Chaim Baskin, Yaniv Nemcovsky, Brian Chmiel, Avi Mendelson, Alex M Bronstein, "Colored noise injection for training adversarially robust neural networks", CVPR 2020 Adversarial robustness workshop

Conferences & Workshop Proceedings

Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Yevgeny Yermolin, Alex Karbachevsky, Alex M Bronstein, Avi Mendelson, "Feature map transform coding for energy-efficient CNN inference", 2020 International Joint Conference on Neural Networks (IJCNN)

2019

Workshops

Yochai Zur, Chaim Baskin, Evgenii Zheltonozhskii, Brian Chmiel, Itay Evron, Alex M Bronstein, "Towards Learning of Filter-Level Heterogeneous Compression of Convolutional Neural Networks", ICML 2019 AutoML Workshop

Conferences & Workshop Proceedings

Nir Diamant, Dean Zadok, Chaim Baskin, Eli Schwartz, Alex M Bronstein, "Beholder-GAN: Generation and beautification of facial images with conditioning on their beauty level", 2019 IEEE International Conference on Image Processing (ICIP)
abstractBibTeXgithub

2018

Conferences & Workshop Proceedings

Chaim Baskin, Natan Liss, Evgenii Zheltonozhskii, Alex M Bronstein, Avi Mendelson, "Streaming architecture for large-scale quantized neural networks on an FPGA-based dataflow platform", 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
abstractBibTeX

Preprints

Natan Liss, Chaim Baskin, Avi Mendelson, Alex M Bronstein, Raja Giryes, "Efficient non-uniform quantizer for quantized neural network targeting reconfigurable hardware", arXiv preprint arXiv:1811.10869

2017

Conferences & Workshop Proceedings

Evgeny Gershikov, Chaim Baskin, "Efficient Horizon Line Detection Using an Energy Function", RACS ’17 Proceedings of the International Conference on Research in Adaptive and Convergent Systems
abstractBibTeX
Close menu